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An improved numerical procedure is presented in order to enhance the possibilities of fit-
ting polynomial equations to predict log P data within the realm of the QSAR/QSPR the-
ory. The use of real exponents instead of restricting to integer ones for the variables in the
mathematical equations gives better results and a minor number of independent vari-
ables are needed to achieve a given accuracy degree. Some possible future extensions of
the method are pointed out.
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The term lipophilic literally means “oil loving”, and lipophilicity is a measure of
the degree to which a given molecule prefers hydrophobic non polar environments to
water. The most common experimental measure of lipophilicity is the logarithm of
the partition coefficient for a solute distributing itself between water and some or-
ganic solvent, such as 1-octanol or chloroform. This quantity is abbreviated as log P
and has been measured experimentally for a wide range of organic compounds

log P = log10([S]org/[Saq]) (1)

The partition coefficient for octanol-water (log Pow) has become the preferred
measure for lipophilicity in the development of biologically active molecules, in
which transport across biological membranes is often critical [1–4] and has become
the most popular physicochemical parameter to define the general lipophilicity of
compounds in structure-activity studies [2,5–7]. The most theoretically satisfying
method for calculating log Pow would be directly model the transfer of a solute from
water to octanol [8–13]. It also could be calculated directly from the free energies of



A(g) A(g)

�GaqA �GoctA

A(aq) A(oct)

�GTrA

log Pow = (Gaq – �Gaq)/2.30RT (2)

The solvation free energy, which is the work required to transfer a molecule from
a fixed position in the ideal gas phase to a fixed position in solution [14], consists of
the free energies of the creation of a cavity in the solution and of the placement of the
solute into that cavity. The former contribution is determined by the volume and sur-
face area of the solute, whereas the later is equivalent to establishing the solute elec-
tronic configuration in the cavity, usually termed as the charging free energy. The
difficulty with this approach is calculating the free energies of solvation [15].

For numerous chemicals log Pow values are readily available. However, its experi-
mental determination is time-consuming, expensive, and can yield various technical
problems [16,17]. Furthermore, it is practically impossible to measure the log Pow

for all existing chemicals, and the ability to predict this quantity of yet no synthesized
compounds could be very useful. Under these conditions, several theoretical schemes
have been proposed and used to calculate log Pow [18]. Although these approaches
work rather well for simple chemicals, they have limitations for complex molecules
since correction factors have to be introduced. This prompted Basak et al. [19] to de-
velop models for the prediction of log Pow of molecules using parameters which can
be calculated directly from structure and resorting to the maximum R2 criterion for
the optimal selection [20]. The authors classify a diverse molecular set (n = 382 mole-
cules) into more homogeneous subsets, taking those which lack any hydrogen-
bonding potential with respect to the scale of Ou et al. [21] (n = 139), and they investi-
gated to what extent topological indices could predict log Pow values for the homoge-
neous non-hydrogen bonding group.

Multiple regression analysis showed that there was an improvement in the predic-
tion of log Pow with respect to the original diverse group of 382 chemicals [22]. The
topological indices appearing in the best one-, two, ....., six-variable linear model for
the prediction of the dependent variable are those listed in Table 1 (Definitions for
these indices are given in [19].

Table 1. Best topological indices to predict log Pow.

0
�

� Valence connectivity type path terms of zero order
4
�

� Valence connectivity type path terms of fourth order
4

PC�
� Valence connectivity type path-cluster terms of fourth order

6
�CH Valence connectivity type chain or cycle terms of fourth order

5
C�
� Valence connectivity type cluster terms of fifth order

ICo Mean information content or complexity of a graph based on the zero order neighborhood
of vertices in a graph
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The model had two influential outliers (compounds 14 and 101 in Table 5 of [19]
as determined by Cook´s D statistic [23] and deletion of these molecules resulted in a
highly significant 6-variable linear model. The purpose of this work is to look for a
rather simple and direct way to improve Basak et al´s equations in order to develop at
full length the potentialities of the present approach.

METHOD

The present study is the continuation of our ongoing QSAR/QSPR research to im-
proved models for the prediction of molecular properties, making full use of the in-
trinsic advantages of the regression formulae. In fact, previously we have verified
that a satisfactory enough improvement of these relationships can be gotten via the
simple resort of employing higher-order equations [24–28] (i.e. quadratic, cubic, etc.
statistical regressions). Non-linear models may be fitted to data sets by the inclusion
of functions of physicochemical parameters in a linear regression model or by use of
non-linear fitting models. Construction of linear regression models containing non-
linear terms is most often prompted when the data is clearly not well fitted by a linear
model. A very common example in the field of QSAR involves non-linear relation-
ships with the hydrophobic descriptors, such as log P [29]. Non-linear dependency of
biological properties on this parameter became apparent early in the development of
QSAR model and a first approach to the solution of these problems involved fitting a
parabola in log P [6]. Whatever the cause of such relationships, it is clear that
non-linear functions are required in order to model the biological data. An interesting
feature of the use of non-linear functions is that it is possible to calculate an optimum
value for the physicochemical property involved (usually log P) [30,31].

In order to make a clear and direct comparison with well known linear equations,
we have resorted to the Basak et al´s previous results [19] for prediction of log Pow

from topological indices listed in Table 1 via a multiple regression analysis. We have
made a systematic search of the best one-variable model, the best two-variables
model, ..... up to the six-variables model of second and third order fitting equations.
We have employed the maximum R2 method to identify the prediction model for log
Pow [20], as used by Basak et al. [19]. The model was developed resorting to the set of
137 compounds which lack any hydrogen-bonding potential with respect to the scale
of Ou et al. [21] to investigate to what extent higher-order relationships could im-
prove linear fitting equations to predict log Pow values as a function of topological in-
dices for the homogeneous non-hydrogen bonding group.

Calculations were made with the well known MATHEMATICA� software,
through the employment of the computational program “Statistic Nonlinear Fit”

contained in the standard statistical analysis packages [32].

An optimal characterization of structure by means... 591



RESULTS AND DISCUSSION

In Table 2 we give a summary of multiple regression analysis for prediction of
log Pow from topological indices via higher-order equations for the best one-variable,
two-variables, .... up to four-variables models together with a couple of rather poor re-
sults (Eqs. 13 and 14) included here for comparative purposes. Table 3 displays the
data for experimental log Pow and estimated log Pow via the best fitting high-order
equation (Eq. 29 in Table 2) for 137 compounds. We have also determined another
complete set of regression equations without the intersection term (i.e. A = 0), but we
deem unnecessary to insert them here because they are slightly less accurate than
those with A � 0. Complete results derived from Eqs. 1-29 (with both A = 0 and A � 0)
are available upon request to the corresponding author (EAC).

Table 2. Fitting equations and statistical parameters.

Equation % R2 Standard
error

Estimated coefficients

Coefficient Standard
error

A + b IC0 + c 0
�

� (1) 94.00 0.3410 A
b
c

–3.3157
–2.6152
4.8448

0.2366
0.3040
4.6179

A + b (0
�

� )2 (2) 91.17 0.4121 A
b

–0.1769
1.0639

0.1286
0.0285

A + b (0
�

�)2 + c IC0 (3) 94.54 0.3253 A
b
c

1.4799
1.1999

–2.6373

0.2085
0.0270
0.2900

A + b (0
�)2 + c (IC0)

2 (4) 94.43 0.3287 A
b
c

0.4309
1.2015

–1.6303

0.1234
0.0275
0.1843

A + b (0
�

�)2 + c (5
�c)

2 (5) 91.19 0.4132 A
b
c

–0.2115
1.0760

–0.3853

0.1448
0.0367
0.7347

A + b (0
�

�)2 + c (6
�CH)2 (6) 92.22 0.3884 A

b
c

–0.4636
1.1601

–5.0010

0.1387
0.0351
1.1790

A + b (0
��)

2 + c (4
��)

2 (7) 91.34 0.4098 A
b
c

–0.4159
1.1525

–0.1674

0.1972
0.0625
0.1105

A + b (0
��)

2 + c (4
�PC)2 (8) 91.52 0.4054 A

b
c

–0.3444
1.1296

–0.2728

0.1452
0.0396
0.1161

A + b (0
��)

2 + c (6
�CH)2 + d (IC0)

3 + e 4
�

� (9) 0.3166 A
b
c
d
e

0.1350
1.0756

–6.0111
–1.2010
0.7037

0.1261
0.4940
1.0077
0.1368
0.1472
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Table 2 (continuation)

A + b(0
�

�)2 + c (IC0)
2 + d (6

�CH)2 + e 4
�

� (10) 95.79 0.2879 A
b
c
d
e

0.4537
1.0799

–1.5033
–6.0439
0.6947

0.1362
0.0485
0.1630
0.9879
0.1445

A + b (0
�

�)2 + c IC0 + d 4
�

�
PC (11) 94.87 0.3166 A

b
c
d

1.1470
1.2750

–2.4016
–0.3602

0.2331
0.0369
0.2937
0.1240

A + b (0
�

�)2 + c (IC0)
2 + d (5

�c)
2 (12) 94.46 0.3289 A

b
c
d

0.3860
1.2181

–1.6345
–0.5179

0.1335
0.0333
0.1845
0.5850

A + b (5
�c)

2 + c (IC0)
2 + d (4

�
�

PC)2 (13) 41.97 1.0647 A
b
c
d

2.7952
0.9167
1.1584
1.7291

0.3809
4.2602
0.5500
0.6466

A + b (5
�c)

2 + c (IC0)
2 + d 4

�PC (14) 48.71 1.0010 A
b
c
d

3.1377
1.0502

–0.0793
2.4355

0.3666
2.5389
0.5947
0.4816

A + b (0
�

�)2 + c (IC0)
3 (15) 94.27 0.3333 A

b
c

0.0784
1.2012

–1.3077

0.1082
0.0281
0.1537

A + b (0
�

�)2 + c (IC0)
3 + d IC0 (16) 94.68 0.3225 A

b
c
d

3.2927
1.1882
1.8035

–6.0834

1.0120
0.0275
0.9855
1.9049

A + b (0
�

�)2 + c (IC0)
3 + d 5

�c (17) 94.34 0.3326 A
b
c
d

–0.0223
1.2339

–1.2084
–0.3807

0.1343
0.0382
0.1549
0.3023

A + b (0
�)2 + c (IC0)

3 + d 6
�CH (18) 94.86 0.3167 A

b
c
d

–0.2023
1.2796

–1.1137
–1.5395

0.1252
0.0334
0.1542
0.3921

A + b (0
�

�)2 + c (IC0)
3 + d 0

�
� (19) 94.28 0.3343 A

b
c
d

–0.4751
1.0641

–1.3082
0.5573

1.1214
0.2778
0.1542
1.1239

A + b (0
�

�)2 + c (IC0)
3 + d 4

�
�

PC (20) 94.69 0.3220 A
b
c
d

–0.1539
1.2873

–1.1877
–0.4072

0.1265
0.0379
0.1530
0.1248
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Table 2 (continuation)

A + b (0
�

v)2 + c (IC0)
3 + d (6

�CH)2 (21) 94.87 0.3165 A
b
c
d

–0.1582
1.2663

–1.2237
–3.8414

0.1189
0.0314
0.1475
0.9708

A + b (0
�

�)2 + c (IC0)
3 + d (6

�CH)3 (22) 94.73 0.3208 A
b
c
d

0.0887
1.2468

–1.2652
–8.5263

0.1151
0.0302
0.1485
2.4959

A + b (0
�

�)3 + c (IC0)
3 + d (6

�CH)3 (23) 94.22 0.3359 A
b
c
d

1.5432
0.4042

–1.2153
–11.4924

0.0976
0.0103
0.1550
2.6499

A + b(0
�

�)2 + c(IC0)
3 + d(6

�CH)2 + e(4
�

�)0.5 (24) 95.81 0.2871 A
b
c
d
e

–0.1097
1.1244

–1.1799
–4.5725
0.6668

0.1082
0.0386
0.1340
0.8908
0.1225

A + b(0
�

�)2 + c(IC0)
3 + d(6

�CH)2 + e(4
�

�)0.6 (25) 95.80 0.2875 A
b
c
d
e

–0.0547
1.1098

–1.1849
–4.8590
0.6951

0.1097
0.0407
0.1342
0.9020
0.1288

A + b(0
�

�)2 + c(IC0)
2.8 + d(6

�CH)2 + e(4
�

�)0.6 (26) 95.84 0.2862 A
b
c
d
e

0.0092
1.1104

–1.2281
–4.8685
0.6949

0.1107
0.0405
0.1374
0.8975
0.1282

A + b(0
�

�)2 + c(IC0)
2.4 + d(6

�CH)2 + e(4
�

�)0.6 (27) 95.91 0.2837 A
b
c
d
e

0.1053
1.1114

–1.3365
–4.8899
0.6950

0.1143
0.0401
0.1461
0.8889
0.1271

A + b(0\��)2 + c(IC0)
2.4 + d 6

�CH + e(4
�

�)0.6 (28) 96.40 0.2662 A
b
c
d
e

–0.0432
1.1029

–1.0834
–2.6105
0.9299

0.1129
0.0371
0.1450
0.3612
0.1280

A + b (0
�

�)2.89089 + c (IC0)
–2.932 + d 6

�CH +

e(4
�

�)0.345562 (29)

97.11 0.2384 A
b
c
d
e

–0.0055
0.4109
0.2232

–2.7957
1.0079

0.0952
0.0103
0.0252
0.3058
0.0936

Results show that, in general, present equations give very good predictions of the
physicochemical property log Pow for the set of 137 chemicals, where R2 is higher
than 0.94 in all cases. When comparing results arising from linear fitting equations
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with those derived from higher order ones, we see there is a significant improvement
(for example, compare statistical data for Eqs. 1, 3, 4, 15, 16 and 19). In some cases,
results are very inaccurate, such as those associated to Eqs. 13 and 14.

Table 3. Experimental and theoretical log P.

Sequence # Molecule log P (exp) log P [19] log P (Eq.29)

1 1,1,1-trichloroethane 2.481 2.797 2.420

2 1,1,2,2-tetrachloroethane 2.644 2.872 2.915

3 1,2,3,4-tetrachlorobenzene 4.994 4.875 4.901

4 1,2,3,4-tetramethylbenzene 4.738 4.707 4.592

5 1,2,3,5-tetrachlorobenzene 4.994 4.912 4.935

6 1,2,3,5-tetramethylbenzene 4.738 4.712 4.623

7 1,2,3-trichlorobenzene 4.281 4.165 4.182

8 1,2,3-trimethylbenzene 4.089 4.067 3.969

9 1,2,4,5-tetrachlorobenzene 4.994 4.896 4.905

10 1,2,4,5-tetramethylbenzene 4.738 4.711 4.595

11 1,2,4-trichlorobenzene 4.281 4.113 4.181

12 1,2,4-trimethylbenzene 4.089 3.991 3.967

13 1,2-dibromobenzene 3.588 4.063 4.518

14 1,2-dichlorobenzene 3.568 3.414 3.452

15 1,2-dichloroethane 1.458 1.862 1.725

16 1,2-diphenylethane 4.888 4.931 4.958

17 1,3,5-trichlorobenzene 4.281 4.195 4.255

18 1,3,5-trimethylbenzene 4.089 4.005 4.034

19 1,3-dichlorobenzene 3.568 3.417 3.503

20 1,3-dimethylnaphthalene 4.614 4.657 4.569

21 1,4,5-trimethylnaphthalene 5.263 5.259 5.168

22 1,4-dibromobenzene 3.868 4.172 4.506

23 1,4-dichlorobenzene 3.568 3.269 3.443

24 1,4-dimethylnaphthalene 4.614 4.698 4.557

25 1,5-dimethylnaphthalene 4.614 4.716 4.566

26 1-butene 2.266 1.627 1.831

27 1-chlorobutane 2.523 2.917 2.911

28 1-chloroheptane 4.110 4.719 4.409

29 1-chlorohexane 3.581 4.175 3.920

30 1-chloronaphthalene 4.029 4.166 4.030

31 1-chloropentane 3.052 3.568 3.414

32 1-chloropropane 1.994 1.920 1.778

33 1-ethylnaphthalene 4.494 4.513 4.398

34 1-hexene 3.324 3.220 3.311

35 1-isopropyl-4-methylbenzene 4.368 4.323 4.327

36 1-methylbenz(a)anthracene 6.313 6.178 6.332
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Table 3 (continuation)

37 1-methylfluorene 4.874 4.946 4.722

38 1-methylnaphthalene 3.965 4.136 3.961

39 1-pentene 2.795 2.510 2.794

40 12-methylbenz(a)anthracene 6.313 6.237 6.329

41 2,2�,4,5-tetrachlorobiphenyl 6.882 6.462 6.725

42 2,2�,4-trichlorobiphenyl 6.169 5.964 6.107

43 2,2,4-trimethylpentane 4.536 4.701 5.047

44 2,3,4,5-tetrachlorobiphenyl 6.882 6.451 6.707

45 2,3-dimethylnaphthalene 4.614 4.632 4.538

46 2,4�-dichlorobiphenyl 5.456 5.385 5.452

47 2,4,5-trichlorobiphenyl 6.169 5.957 6.078

48 2,4,6-trichlorobiphenyl 6.169 6.024 6.121

49 2,5-dichlorobiphenyl 5.456 5.404 5.448

50 2,6-dichlorobiphenyl 5.456 5.546 5.479

51 2,6-dimethylnaphthalene 4.614 4.476 4.546

52 2-chlorobiphenyl 4.743 5.016 4.847

53 2-chloronaphthalene 4.029 4.049 4.016

54 2-chlorophenanthrene 5.203 5.221 5.240

55 2-chlorotoluene 3.504 3.283 3.326

56 2-methylanthracene 5.139 5.140 5.167

57 2-methylbutane 3.209 2.496 2.661

58 2-methylhexane 4.267 4.080 4.256

59 2-methylnaphthalene 3.965 4.015 3.948

60 2-methylpentane 3.738 3.592 3.831

61 2-methylphenanthrene 5.139 5.192 5.175

62 3-chlorotoluene 3.504 3.254 3.372

63 4-chlorotoluene 3.504 3.118 3.316

64 5,6-dimethylchrysene 6.962 6.657 6.857

65 5-methylchrysene 6.313 6.231 6.329

66 6-methylbenzo(e)pyrene 6.773 6.687 6.838

67 6-methylchrysene 6.313 6.244 6.325

68 7-ethylbenz(a)anthracene 6.842 6.466 6.731

69 7-methylbenz(a)anthracene 6.313 6.249 6.325

70 9,10-dimethylanthracene 5.788 5.832 5.736

71 9-methylanthracene 5.139 5.316 5.174

72 acenaphthene 4.070 4.026 3.832

73 adamantane 3.982 4.376 4.366

74 anthracene 4.490 4.815 4.627

75 benz(a)anthracene 5.664 5.826 5.802

76 benz(a)anthracene 5.664 5.783 5.797

77 benzene 2.142 2.031 2.252

78 benzo(a)fluorene 5.399 5.298 5.218
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Table 3 (continuation)

79 benzo(a)pyrene 6.124 6.299 6.341

80 benzo(b)fluoranthrene 6.124 5.984 5.962

81 benzo(b)fluorene 5.399 5.232 5.192

82 benzo(e)pyrene 6.124 6.346 6.335

83 benzo(ghi)perylene 6.584 6.732 6.850

84 benzo(j)fluoranthrene 6.124 5.986 5.991

85 benzo(k)fluoranthrene 6.124 5.942 5.969

86 biphenyl 4.030 4.529 4.354

87 bromobenzene 3.005 3.230 3.335

88 carbon tetrachloride 2.875 3.544 3.572

89 chloroanthrene 6.418 6.065 6.200

90 chlorobenzene 2.855 2.663 2.787

91 chrysene 5.664 5.877 5.808

92 cycloheptane 3.913 4.160 3.902

93 cyclohexane 3.354 3.198 3.120

94 cyclohexene 2.810 2.786 2.830

95 cyclooctane 4.472 4.713 4.356

96 cyclopentane 2.795 2.836 2.998

97 cyclopentene 2.251 2.371 2.690

98 dibenz(ah)anthracene 6.838 6.659 6.925

99 dibenz(aj)anthracene 6.838 6.659 6.926

100 dimethyl sulfide 0.842 1.622 1.607

101 ethyl chloride 1.465 1.167 1.347

102 ethylbenzene 3.320 3.129 3.163

103 fluoranthrene 4.950 5.058 4.811

104 fluorene 4.225 4.461 4.167

105 fluorobenzene 2.285 2.069 2.278

106 fluorotrichloromethane 2.435 2.455 2.129

107 hexachlorobenzene 6.420 6.534 6.628

108 hexamethylbenzene 6.036 5.966 5.824

109 iodobenzene 3.265 3.579 3.707

110 isopropylbenzene 3.719 3.802 3.706

111 naphthalene 3.316 3.582 3.401

112 pentachlorobenzene 5.707 5.667 5.672

113 pentachloroethane 3.627 3.844 3.636

114 pentamethylbenzene 5.387 5.365 5.221

115 perylene 6.124 6.458 6.404

116 phenanthrene 4.490 4.866 4.635

117 pyrene 4.950 5.379 5.202

118 tetrachloroethylene 3.020 3.394 3.317

119 toluene 2.791 2.601 2.727

120 trichloroethylene 2.267 2.193 2.207
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Table 3 (continuation)

121 triphenylene 5.664 5.924 5.795

122 m-xylene 3.440 3.300 3.367

123 n-decane 5.984 5.743 5.547

124 n-nonane 5.455 5.297 5.099

125 n-octane 4.926 4.813 4.645

126 n-undecane 6.513 6.153 5.989

127 n-heptane 4.397 4.277 4.179

128 n-butane 2.810 2.098 2.181

129 n-butylbenzene 4.378 4.191 4.072

130 n-hexane 3.868 3.681 3.705

131 n-pentane 3.339 3.035 3.231

132 n-propylbenzene 3.849 3.729 3.631

133 o-xylene 3.440 3.359 3.325

134 p-xylene 3.440 3.176 3.316

135 tert-amylbenzene 4.647 4.609 4.731

136 tert-butylbenzene 4.118 4.506 4.277

137 trans-1,2-dichloroethylene 1.514 1.567 1.548

Average absolute deviation – 0.20 0.16

Perhaps a close comparison between our best results and Basak et al‘s best ones is
in order. In fact, those authors presented their predictions for the following highly sig-
nificant 6-variable model [19]:

log P = –3.127 – 1.644(IC0) + 2.120(5
�C) – 2.914(6

�CH) + 4.208(0
�

�) + 1.060(4
�

�) –

– 1.020(4
�

�
PC) (n = 137, R2 = 0.97, se = 0.26) (3)

which can be compared with our present optimal 4-variables model:

log P = –0.005 + 0.411(0
�

�)2.89089 + 0.223(ICo)
–2.932 – 2.796(6

�CH) + 1.008(4
�

�)0.345562

(n = 137, R2 = 0.97, se = 0.24) (4)

We have not accomplished a complete search of optimal non-integer exponents,
but we deem that present results seem to highlight the convenience of looking for such
real exponents in order to get suitable fitting equations. Evidently, a more thorough
numerical search for optimal parameters most probably would yield even better pre-
dictive equations. At present, work along this line is being carried out in our labora-
tory and results will be presented elsewhere in the forthcoming future.
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CONCLUSIONS

The primary purpose of this paper was to develop an improved calculation
scheme to compute log P data on the basis of previous Basak et al’s results using al-
gorithmically defined structural variables. The success of our efforts is evident from
results presented in Tables 2 and 3, which show that resorting to the employment of
higher-order and non-integer exponents for the variables can efficiently predict log P
values of a relatively homogeneous and large group of weakly hydrogen bonding
chemicals. When going beyond linear relationships, a minor set of variables is needed
in order to achieve a desirable accuracy (Compare statistical results corresponding to
Eq. (9) in [19] with those of Eq. (29) in Table 2 of this paper). We have used graph
invariants defined on linear graphs and multigraphs. While the list of molecular
descriptors, chosen for this study, is the same as that employed by Basak et al. [19]
and it is not exhaustive, the set of indices used here appear to optimally characterize
the most important aspects of molecular structure related to the prediction of log
P(octanol-water).

Further studies with other properties and other predictors are necessary in order to
determine the significance of this procedure in the prediction of physicochemical
properties and the characterization of molecular structure. At present we are involved
in this sort of analysis and results will be presented elsewhere in the near future.
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